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A quantum-mechanical calculation of the scattering rate of light by light in the polarizable medium of a 
plasma is carried out. It is shown that if the frequency a>o of the incident light is much greater than the elec­
tron plasma frequency caPi the pA2 term in the nonrelativistic Hamiltonian coupling the radiation to matter 
dominates the j • A interaction, provided the frequency shifts Aco satisfy A«<Ccoo. I n this approximation, the 
scattering amplitude is proportional to the Green's function for electron-density fluctuations (which reduces 
to the electron-density correlation function in the classical limit). This leads to an expression for the differ­
ential scattering rate which is formally exact to all orders in the interparticle interactions. The spectrum of 
the scattered light in this approximation has resonances at the collective modes of the plasma if COOA<3C&D, 
the Debye wave number. The total scattering rate is estimated in the collisionless (random-phase) approxi­
mation. Under the conditions of this calculation, rather high plasma densities and temperatures are required 
to obtain a detectable rate. 

I. INTRODUCTION 

TH E development of the optical laser has stimu­
lated interest in nonlinear electromagnetic in­

teractions. A polarizable medium such as a plasma or 
even the vacuum provides the nonlinear interaction 
making possible the scattering of one photon by another. 
The process can be described as the absorption of the 
radiation by a virtual density fluctuation of the medium 
(virtual pair production in the vacuum case) which is in 
turn de-excited by producing new radiation. An energy 
of mc2 is necessary to appreciably polarize the vacuum so 
that the resulting cross section is of order1 r0

2a2(ficc/mc2y 
for low energies and is extremely small at optical fre­
quencies. A plasma, on the other hand, is very easy to 
polarize and one expects a much larger cross section. 
This paper is concerned with a quantum-mechanical 
calculation of this cross section. The most interesting 
features of the result are the relatively large and 
probably observable scattering rate using typical laser 
parameters and hot, dense plasmas and the resonances 
in the scattered spectrum at the collective modes of a 
plasma. 

Since we use a nonrelativistic Hamiltonian, the in­
teraction of the radiation with matter consists of a 
j ' A term (j is the current density operator and A is the 
vector potential of the transverse radiation field) and a 
pA2 term (p is the charge-density operator). The key 
approximation in this calculation is that the j • A inter­
action can be neglected compared with the pA2 inter­
action if the frequency co0 of the incoming light is much 
greater than the plasma frequency cop provided the fre­
quency shifts in scattering are much less than co0. In 

1 A comprehensive summary of the vacuum theory is given by 
J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons 
(Addison Wesley Publishing Company, Inc., Reading, Massa­
chusetts, 1955), Chap. 13. Here ro = e2/mc2 is the classical electron 
radius. 

Sec. I I it is shown that the 5-matrix element as calcu­
lated in this approximation is proportional to the 
density-density Green's function of the plasma. The 
conditions for the validity of this approximation are dis­
cussed in Sec. I I I . In Sec. IV the kinematics for this 
process are analyzed, a formally exact formula (in the 
pA2 approximation) for the differential scattering rate 
and an estimate of the total scattering rate for this proc­
ess in the collisionless approximation are given. 

II. SCATTERING AMPLITUDE IN 
HIGH-FREQUENCY LIMIT 

Our treatment will be based on the nonrelativistic 
Hamiltonian for matter and radiation which can be 
written 

H=Hm-\rHR-{-Hint, (2.1) 

where Hm is the complete Hamiltonian of the inter­
acting many-particle system, HR represents the free 
radiation field and 

Hint—Hi-\-H2, 

Hx= — / d*ocj(x,t) • A(x,0 , 

(2.2) 

(2.3) 

# 2 = E -
e2Z2 

2msc
2 

/ • 

d3xns(x,t)A(x,t) • A(x,0 , (2.4) 

where j(x,0 is the total current-density operator (pro­
portional to e) for the matter (in the absence of radia­
tion), n8(x,t) is the number-density operator for par­
ticles of species s with mass ms and charge ezs. A(x,t) is 
the transverse vector-potential operator for the elec­
tromagnetic field which we treat in the Coulomb gauge 
(V"A=0). Because of the mass dependence of (2.3) we 
need only consider the interaction with the electron 
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density to terms of order me/nii. Similarly, only the elec­
tron component of the current is important in this case. 

We wish to calculate the ^-matrix element between an 
initial state of two photons (ehki; e2,k2) and a final state 
of two photons (e2,h; hfi^). The Dyson-Wick expansion 
in the interaction picture of the matter-field interaction 
(which is the Heisenberg picture of the interacting 
system without radiation field) yields the following 
terms of fourth order in the vector potential: 

5(2) = [ _ i ) _ ( _ ! _ ) [d*xi[d*Xi 
\ ft/ 2\\2mc2/ J J 

5(3) 
V */ 3! 

X(r^ e ( l )^(2)) . iV[A 2 ( l )A 2 (2) ] J 

3 1 / e2 v 

2mcAJ j 

(2.5) 

d*xi / d4x2 / d4X; 

X ( r ^ e ( l ) ^ ( 2 ) > ( 3 ) ) . A [ A 2 ( l M , ( 2 M , ( 3 ) ] , (2.6) 

$W=(--\ jd^X! fd*X2 Jd4XS \d±XA 

X(Tj,(l)U2)ja(3)jp(4)) 

-N[_A,{\)AV{2)A^)AP{^ (2.7) 

Here T is Wick's chronological operator and N is the 
normal product. Of these contributions only S(2) makes 
an important contribution if o?i and o>2 are high fre­
quencies compared, say, to the plasma frequency. This 
is a crucial argument in simplifying the calculation. The 
argument for this approximation will be given in Sec. 
I l l following the calculation of the S(2) contribution. 

The S^ matrix element for this problem is 

(k3e3; k4e4 |,S(2) |kiei; k2e2) 

*2 (4TT) V T O - 2 ( ^ 2 ) 1 / 2 

\mc1/ (16C0]C02C03C04)1/2 

Xe^e2
ve2<reiPGflV(Tp

(2)(k1k2hh)(2Try 

X«53(ki+k2-k3-k4)5(coi+a;2-co3-co4). (2.8) 

The electromagnetic field is normalized to n\ and n2 

photons in the incident beams in a volume VQ corre­
sponding to the interaction volume of the two laser 
beams and we have used the notation &i=(ki,wi) and 
« i = |k i | c where 

^ 1 ^ 2 ^ 3 ^ 4 ^ ^ p
( 2 ) ( ^ l ^ 2 ^ 3 ^ 4 ) 

+ (ei'e4}(e2-e^)Uee(kA~k1)}. 
Here 

n M (* )= fd^x1-x2)e
ik'^-'^Jlee(l,2)i 

n M ( i , 2 ) = * - l < r » e ( i > . ( 2 ) ) . 

(2.9) 

(2.10) 

(k, + k2) 

FIG. 1. The three basic contributions to the scattering amplitude 
in the pA2 or high-frequency approximation. The wavy lines 
represent the photons and the shaded bubble represents the elec­
tron density Green's function Uee (k) which carries the momentum 
and energy denoted in parenthesis (&) = (k,co). a, b, and c refer, 
respectively, to the three terms in the amplitude of Eq. (2.9). 

The brackets (• • •) denote the average in the equilib­
rium ensemble of the matter. ITee(l,2) is the Green's 
function for electron-density fluctuations. A useful 
graphical representation of this amplitude is given in 
Fig. 1. The shaded bubble represents the propagation of 
a density fluctuation in the system. For certain values of 
the k's the resonances of Hee will contribute and we can 
describe the scattering process as involving an exchange 
of plasmons. To take the classical limit of this result we 
express Uee in terms of the retarded commutator2 

n e +( l ,2 ) = ^ - 1 7 ? ( / 1 - « ( [ ^ ( l ) , ^ ( 2 ) ] _ ) . (2.11) 

The transforms are related by2 

nee(k,co) = Renee
+(k,co) 

Xi coth|/5*co ImUee
+(k,o)). (2.12) 

So 
lim Mlee(k,a>) = 2;(Imnee+(k,co)//fo ) . (2.13) 
a -> 0 

In the classical limit only I m n e e
+ occurs which de­

scribes real density fluctuations (in distinction to ReIIee
+ 

which describes virtual processes). Therefore, this ampli­
tude involves a real intermediate state and is closely 
related to the cross section for incoherent scattering.3 

(The function Uee
+ differs by a factor 4?re2 from the func­

tion n e
+ defined in Ref. 3.) The functions n e e

+ can be re­
lated to the partial conductivities of the system and the 
longitudinal dielectric function as shown in Ref. 3. Here 
we consider only a classical plasma in the random-

2 A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskii, 
Methods of Quantum Field Theory in Statistical Mechanics (Pren­
tice-Hall Inc., Englewood Cliffs, New Jersey, 1963). 

3 D. F. DuBois and V. Gilinsky, Phys. Rev. 133, A1308 and 
A1317 (1964), parts I and II. 
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phase approximation (RPA)3: 

4x^2 , ^ x 1/2 , 

kD
2 

1/2 

Aire2 /7T\1 / 2co 
— i m n „ + ( M = ( - ) -*-*(•/*>» 
kD

2 \2/ k 
1-

QoHWk) 

+ © a& 
_g—'2 («/<*&)' 

&2€z+(k,a>) 

eo+(«/4) 

k2eL
+(kcc) 

(2.14) 

where k and co are measured in units of the Debye wave 
n u m b e r kD= (kwe2nfi)112 a n d up, a n d 

€L
+(k,o)) = l+*r«Q0

+(co/*)+J6r«eo+(co/aife) , 

a= (tne/tHi)1/2
 y 

Qo+(o>/k) = l ^-l(«/&)2 / , 

& ./o 
dte*«. 

\ 2 / £ 
r-*(«/fc)2 

(2.15) 

(2.16) 

(2.17) 

III. HIGH-FREQUENCY APPROXIMATION 

Next, we consider the contributions of 5 ( 3 ) and 5 ( 4 ) to 
the scattering amplitude. I t is easily shown that the 
total amplitude including these contributions is given 
by (2.8) by adding to Gllv<Tp

l-2){kik2)kzk^ the terms 
G^p^ and G^p^\ The S<8> contribution is 

h»hvh°hpGvVap™{khk2\khki) 

^h^h^Km/e2) 
>K{d<7pRllv(ki,k2l ^3+^4)+$vpRn<r(ki,kz; ^4—^2) 

-{-dy<rRltp(kl,k4] kz — k2)} 

+ (3 similar terms with 1 ;=± 3; 2 ^± 4) . (3.1) 
Here 

/

00 /«00 

<fti / dt^^er***** 
-00 *̂  —00 

X<riM(k1,/1)i,(k8,<8)p(*,0)>, (3.2) 
where the Heisenberg operator jM(k,0 is defined by 

i„ (k ,0= [dtxe^'Mx,*), (3.3) 

with a similar definition for p(k,Q). 
The S ( 4 ) contribution is 

^ 2 ^ 3 ^ 4 P G M ^ P ( 4 ) ( * I ^ 2 ; * 3 , * 4 ) 

= ^hvh(Thpfi(m/e2)2{TiiV<Tp(khk2\ faM) 
(kijk*; k2,kz)} 

+ (3 terms with 1 ;=± 3; 2 ;=± 4 ) , (3.4) 
where here 

Tp.V(yp\k\Jz,<L\ kz,ki) 

/

00 /»00 y.00 

dh / * 2 / 
-00 ^ — 0 0 "^ — 0 0 

x (ryM(k1,/1)i,(k2^2)y,(k3,/3)ip(k4,o)). (3.5) 

dtzeio>ltleia}2t2e~imt3 

An exact evaluation of these contributions is difficult 
to carry out beyond the RPA for reasons to be discussed. 
However, the criterion for the neglect of these contribu­
tions can be established by general physical arguments. 

First, let us backtrack a moment and notice that in 
(2.9), the last two terms in the amplitude depend only 
on the frequency differences coi—co3, 002—C04, whereas 
the first term depends on the sum CO1+C02. If we let wi 
and co2 become large compared with cop while keeping 
|coi—C03I, |co2—C04I <coi, C02 the term depending on 
C01+C02 becomes negligible in comparison with the terms 
depending on the frequency differences. This follows 
from the exact asymptotic form of Uee: 

4™*n„(k*>) —• <[i„(k, o), P ( -k , o)])A>2=£WAo2. 
co ->oo 

This can be seen explicitly for IIee in the RPA as given 
in (2.14). 

Similarly, the functions R^ and T^ap depend on the 
individual frequencies coi, co2, co3 and not only on the 
frequency differences. For any physically realizable 
functions of the time variables in (3.2) and (3.5) it fol­
lows from the general properties of Fourier transforms 

lim i^(ki,coi;k3,co3;k) = 0 , (3.7) 
coi ->oo, C03 '~*-°o 

lim jRM„ffp(ki,coi; k2,co2; k3,co3; k4) = 0. (3.8) 

This statement applies if the time functions in the inte­
grands of (3.2) and (3.5) have no singular behavior 
worse than step functions. To define the transforms in 
(3.2) and (3.5) we must, as usual in S-matrix theory in­
sert the convergence factors e~\6l '* for each time variable 
U where the limit € —» 0 + is ultimately to be taken. The 
asymptotic limits can actually be carried out formally 
by expanding the integrands about U— 0. This leads to a 
result for R^, for example, involving a series of terms in­
volving inverse powers of coi and C03 with numerators 
which are averages of products of p(k,0) with various 
time derivatives (including the zeroth) of the current 
operators. The explicit results are too complicated to 
give here. 

I t is clear then that for sufficiently high coi and C02, i.e., 
wi, co2̂ >com, the contributions from 5 ( 3 ) and .S(4) can be 
neglected relative to those of Si2) provided we restrict 
[coi—C031, |co2—co4|<$Co>i. I t remains to be shown what 
scale of frequencies is involved. Of the parameters of the 
plasma e2, n, m, M, T the only frequencies that can be 
formed are the plasma frequency cop=(Aire2n/m)1/2 or 
cop times some function of the dimensionless parameters 
X=&z>3/^, a== (m/M)112. If we include the parameters ki 
describing the radiation, we can also form the fre­
quencies kiVe=ki(kT/m)1/2=(ki/kD)oop or some com­
bination of X and a times these. If X<3Cl and ki<kD> the 
highest frequency of significance in plasma physics is 
cop. Therefore, a reasonable conservative estimate is to 
take com==cop. Since we must have coi, a>2̂ >co-p for the inci-
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FIG. 2. Diagrams for resonant processes in the collisionless 
(RPA) approximation; (a) contribution to G^, . . . ( b ) contribu­
tion to Gnv<rp(3); (c) contribution to G>„<rP

(4). The total amplitude 
is obtained by including all permutations of the photon vertices 
which lead from the same initial to the same final state. The 
braided line represents the dynamically screened Coulomb 
interaction, (d) Detail of the triangular vertices. 

time of the order of fi(En—EQ)~l where En—Eo are the 
excitation energies of the atom. Thus, for fto)<^En—Eo 
we have the well-known result that the j • A terms and 
the pA2 are of comparable magnitude with an important 
cancellation leading to Rayleigh scattering. On the 
other hand, for fioS^>En—E^ the j • A terms are negligible 
compared to pA2 which give rise to Thompson scattering. 

Finally, let us discuss these results in terms of the 
diagram expansion of the amplitudes R^ and TpV(rp. 
Here we must make use of the theory of temperature 
Green's functions2'4,5 in which, for example, we go over 
to imaginary temperatures 0=ir so in the averages we 
have 

{•••>='Tr(*-'**---). (3.10) 

This allows us to impose periodicity conditions in time 
on the imaginary temperature Green's functions4 R^ 
and Tpvop and we can then use Feynman diagram 
methods as discussed in Ref. 5. 

In Fig. 2(a) we draw a contribution to G^ (2) the 
collisionless approximation (RPA). Here the braided 
line represents the dynamically screened Coulomb inter­
action5 which has resonances at the collective modes of 
the plasma. In Figs. 2(b) and 2(c) we draw the analogous 
contributions from G/tJ,ffp

(3) and G><rP
(4), respectively. 

The double photon or pA2 vertex in Fig. 2(a) transfers 
the difference frequency coi—co3 to the simple polariza­
tion loop. The single photon or j»A vertices in the tri­
angular loops in Figs. 2(b) and 2(c), however, depend 
on the separate frequencies coi, w2 and so introduce large 
energy denominators for coi, o^^co^, into these terms. 

dent light to penetrate the plasma, this is not a serious 
restriction. 

More detailed arguments (see Ref. 3 and below) show 
that actually, oom is of the order of the electron-ion col­
lision Tei frequency if ve<^c, 

r^XGcoplntCsX- 1 ) , (3.9) 

where Ci and Ci are constants. This can be made plausi­
ble, for example, by expanding the integrand (3.2) 
around h=0 and k = 0 to obtain the asymptotic form for 
large coi, o?3. I t is easily shown that for the transverse 
components (i.e., e^egR^ the leading terms involving 
Jn(kifi) and jv{kzfi) vanish leaving only higher order 
terms involving time derivatives of j,i(ki,ti) and jv(kzfy) 
at / = 0 and h=Q. The frequency associated with the 
time rate of change of the current is the electron-ion 
collision frequency. 

From these arguments we can abstract the general 
statement that the j -A interaction can be neglected if 
the frequency of the incident light in a scattering 
problem is so high that in one period of the light the in­
duced currents in the system cannot change appreciably. 
The currents in a plasma (kve<^co) can change ap­
preciably only in a time of order Yer

l. For bound elec­
trons in an atom the current changes appreciably in a 

U.UIUU 
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FIG. 3. The spectral shape of the scattered light. Here we plot 
dT/do) in the RPA versus o>= (COQ—01%)/UP various values of 
k = k1= |ki — k^lkiT1. The vertical scale is arbitrary. The w scale is 
normalized to ak. The relatively weak resonances at co = ± l are 
not shown on this graph. 

4 P. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959). 
5 D. F. DuBois, V. Gilinsky, and M. Kivelson, Phys. Rev. 129, 

2376 (1963). 
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For small k and co (in plasma units) we can find the 
explicit contribution of the j • A interaction by appealing 
to a type of Ward identity. The amplitude for the 
triangular loop in Fig. 2(d) is given by (^remembering 
k 3 = k i + k , o>3=coi+co and identifying po with co1 in 
Fig. 2(d)] 

4TT02 r d3p 

ei»ez
vAliV°(khk10;k,a>)= / (p-«i)(p+ki)-g2 

m2 J (2TT)3 

1 i i i 

x-Z 
ft Po pQ—%v po+ho— £p+k- pO+ko— £p+k 

+ (similar term with ^10—> — &10, ki—» — ki) (3.11) 

using here the rules of Ref. 5. The transverse photon 
self-energy part as discussed in Ref. 6. Equation (4.41) 
is given by 

Aire2 r dH 
QT°(Kko) = / — - ( p - e 1 ) ( p + k 1 ) . & 

m2 J (2TT)3 

t i 
X L -. (3.12) 

PO po—£v po+k0— £p+k 

This is represented by a simple polarization loop. Were 
we generalized slightly from Ref. 6 by taking the 
polarizations of the incident and outgoing photons to be 
different. 

Next, expand A^0 in powers of k and ko (in plasma 
units) 

e W A ^ k i ^ i o ; k,£o) 
4 = « i ^ 3 F V ( M i o ; 0 , 0 ) + 0 ( * 0 , k ) . (3.13) 

we can then use a Ward identity of the form 

1 d 1 

(Po— £P)2 df*po—£p 

d 1 
= (3.14) 

< V [ ^ - ( p 2 / 2 m ) + / z ] 

(where /* is the chemical potential) to connect7 

V ( M i o ; 0,0) with QT°(khk10): 

e i ' V S ^ M i o ; 0,0) = i(d/dn)QT(kukio). (3.15) 

This is useful because the properties of QT have been 
given in previous work. More importantly, it is not 
hard to see that this identity applies to the fully cor­
rected loops as signified by the omission of the zero 
superscripts in (3.15). We may include all possible self-
energy and vertex corrections in the loops for QT and 

6 D. F. DuBois, V. Gilinsky, and M. Kivelson, Rand Corpora­
tion, Report RM-3224-AEC, August 1962 (unpublished). 

7 The limit to —> 0, k —> 0 is actually ambiguous. It is easily 
shown that the limit implied by (3.15) is co—>0, k—>0 with 
oo/k —• 0. Therefore, this limit applies near the acoustic ion reso­
nance where u)/k~a<Ki. 

A pp. Differentiation with respect to /* is equivalent to 
attaching one zero momentum, zero-frequency screened 
interaction line in all possible ways in the particles lines 
of QT and is therefore equivalent to e / ^ A ^ k i ^ i o ; 0,0). 

In order to use (3.15) in the present problem, we must 
be able to analytically continue the tilde functions of 
discrete energy variables ki0 to obtain the Green's func­
tions QT(khui) and AM„(ki,a>i; 0,0) of the continuous 
variables coi. For the two point function Qr(ki,wi) 
the procedure is well known.2 We define a function 
(?r+(ki,coi) analytic in the upper half-plane by setting 
kio=coi for values of coi in this half-plane. Then for 
real coi 

<3r(ki,coi) = Re(2r+(k1,coi) 

+i cothj/3feoi Im()r+(ki,wi). (3.16) 

To our knowledge a comparable continuation procedure 
for three point functions such as A^k^wi ; k,w) is not 
known. We shall therefore assume that for AM„(ki,a)i; 0,0) 
the continuation procedure is the same as for QT(kho)i). 
In the asymptotic limit this is probably valid. The 
analytic continuation procedure is a prescription for 
treating the poles of the denominators in AM„(ki,a>i; 0,0) 
by proper assignment of zbie's. In the asymptotic limit 
in which coi is much greater than any of the important 
states of the system this assignment is not important. 
For example, as coi-^oo in (3.16) we see 

QT(K<*I) >er+(ki,wi). (3.17) 
coi -*°o 

Therefore, for large coi we can write 

eiWAr+Qiw, 0,0) = i(d/aM)0r+(ki,«i). (3.18) 

From Refs. 5 and 6 it follows that8 if \<<Cl, kive<^coi 
C 0 i » r e ; 

1 d &l2COp
4 

6r+(ki,coi) = \{h • ez) 
13 dp kn2 coi2 

+2i(£1-es)^-rei(l-e-^)J (3.19) 
/3^coi2 

where Tei is roughly as given in (3.9). An exact formula 
is given in Ref. 5. In this formula we have kept only 
the leading terms in the real and imaginary parts. The 
real part is contributed by QT0+, i.e., the RPA [which 
has no imaginary part iio)i=kic (see Ref. 6)] while the 
leading term in the imaginary part comes from the col­
lision corrections to QT+-

The expression for AM„(^i,wi; 0,0) obtained from (3.18) 

8 To derive this expression we note that the density n enters 
these expressions only via the chemical potentials jue and &. In the 
limit of classical statistics considered here d/diJ,e — d/d(Xi = n(3d/dn. 
The expression for 4TT Imo-r(k,co)=Qr(k,oj) -of1 given in Ref. 5, 
Eqs. (6.23) and (6.25) are proportional to n2 and in the high-
frequency limit u>y>o}p [see Eq. (6.24)] this is the only density 
dependence and rei(w)=Xwp(6v27r3/2)-1ln(4e-c'/JS^co), where C is 
Euler's constant. We have also restored a factor (j3foo)-1(t-~e~^w) 
which was taken to be 1 in Ref. 5 for the case /3 ĉo<Kl, 
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and (3.19) is to be compared with the corresponding 
pA2 vertex which is (l/m)Qe

+(&,co) where Qe
+(£,w) is the 

complete electron polarization part defined in Ref s. 3 and 
4. In these references it is shown explicitly that in the col-
lisionless approximation and in the collision dominated 
approximation that Qe+(k,co) = kD2 when kve^>co. This 
limit appears to be generally valid. Since in this case 
(l/tn)Qe

+=l3a)p2 we see that the first term in (3.19) aris­
ing from the collisionless approximation can be neglected 
relative to (l/m)Qe

+ provided kT<£rnc2 (noting that 
wi=k\c). Likewise the second term or collision correc­
tion can be neglected provided a>i>«p}£>rei\ 

The requirement &i<fa> discussed preceding (3.9) 
is unnecessarily restrictive as we see from the argument 
just given. Equation (3.19) is valid for all values of ki 
for which kive<£jj)i — kic. This is satisfied independent of 
ki as long as knT^mc2. The argument above applies 
when &= l&i—h\<^kn for frequency shifts co in the 
neighborhood of the collectively narrowed ion reso­
nance and therefore the diagrams considered above 
dominate in this case.3 In the case J£>>kD, on the other 
hand, it is physically clear that the scattering must re­
duce to the scattering from independent free electrons, 
i.e., essentially to Thomson scattering. In this case it is 
well known that only the pA2 interaction contributes for 
frequencies such that fiooh fioo2<^mc2. 

We conclude then from these arguments that the 
pA2 interaction dominates the j«A interaction provided 
coi, o)2>o)p while |coi—C031, |o>2—co4|<$Cwi, ^2, and 
kT<<Cmc2. A more detailed study of these requirements in 
the vicinity of the plasma resonance is in progress. The 
general arguments made preceding (3.9) indicate that 
the same restrictions apply in this case. I t is clear that 
the pA2 approximation is valid in the RPA if kBT<^mc2, 

IV. SCATTERING RATE AND KINEMATICS 

The total scattering rate Y is found from the ampli­
tude using the well-known relation1 

r=F 0 (2x&) 4 

x{EI<f|^l/>l2«(^-£/)«8(P*-P/)U-, (4.1) 
/ 

where we sum over final states and average over initial 
states. The amplitude (i\M\f) is related to the S 
matrix element by 

</ |5|f>=(2irft)4fi(E t-E /)fi«(P<-P /)(/ |Af| t>- (4.2) 

The volume Vo that must be considered for this problem 
is the actual volume of interaction of the laser beams in 
the plasma. 

The density of final states for this problem is 

/

ddh dzk± 
(27r)4Fo2 

(2TT)3 (2ir)» 

X53(k1+k2-k3-k4)5(co1+a J 2-a33-co4) . (4.3) 

If we observe only one of the scattered photons, say, 
k3 for some particular small range of values, then we in­
tegrate over k4 and we find 

p(Ef) 
/Vo\2d£l3 co3

2 

-G 
where 

cz l - cos20 ' 

cos20/=&3-&4. 

(4.4) 

(4.5) 

Consider the symmetric case in which a>i=a>2=«o. 
Then the total momentum of the incoming radiation 
defines an axis of symmetry. The final wave vector k3 
is restricted by conservation of energy and momentum 
to lie in a cone of angle 03 from the axis of symmetry 
where 

cos20o+l+2(o;/coo) 
cos03= , (4.6) 

2 cos0o(l+co/coo) 

where co = a>3—a>i=a>3—wo and cos20o=&i-&2. In the 
case w/co0<3Cl, for which our approximations are valid, 
we see that 

03=0o, (4.7) 

to terms of order co/W The scattered radiation thus is 
found in a cone of angle 0O which subtends a solid angle 

A&3= 27r(Aco/wo)(sin20o/cos0o), (4.8) 

where Aw is the effective range of frequency shifts of the 
scattered radiation. We shall see that Aco/coo<£Cl when 
collective effects are taken into account so that the 
scattered radiation is confined to a very thin cone. 

If we use (4.2), (4.4), and (2.8), we obtain for the dif­
ferential scattering rate into dti^ 

dT r 0
2 nifi2C 1 C03 1 

d&z 4W 2 Vo COXC02W4 1 —COS20' 

X I {^e2)eiH2vez^e^G^p{kxMMM) | 2 , (4.9) 

where ki, k2; k3, k4 and coi, C02, o?3, 0)4 are restricted by 
conservation of energy and momentum. For coi, co2^>cop 

we have seen that the first term in (2.9) for G^ffp 

[Fig. 1(a)], which transfers an energy a>i+co2 to the 
density fluctuation, is negligible compared to the other 
terms which transfer an energy coi—C03, coi—a>4 provided 
these differences are small. Keeping only these ampli­
tudes, using (2.9), (2.13), and (4.9) we have 

dT n^c/oop 

dtiz 

k 

hC/o)p\
2 1 

0 Vcuo/ l - cos20 ' 

( ! ) 

ire2\2 

D 2 / 

[ l - ( g i - J & j ) 8 X l - ( * r k ) 8 ] 

I m l l . + ( k , w ) + I m n . . + ( k » (4.10) 
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Here we have also chosen the symmetric case a>i=a>2=co0 

and £1=e<i and have summed over outgoing polarizations 
%z and £4. 

If the scattered radiation is observed in the plane 
perpendicular to that of the incoming radiation, then 
&~&'=V2:&o sin0o. In Fig. 2 we plot the frequency dis­
tribution of the scattered light 

dT dT 2r sin20o 

do) dQ% o>o cos#o 
(4.U) 

as a function of cc in the RPA using (2.14). This rate 
being proportional to or2 | Imnee(&,a>) | 2 is proportional 
to the square of the rate or cross section for incoherent 
scattering.3 For k<^kn the spectrum is dominated by a 
central line of width approximately given by 

Aco~( — ) —cop=£( — ) , (4.12) 
XmJ kn \mi/ 

which arises from the low-frequency ion acoustic plasma 
resonance. At o>=±cop there is also a resonance but in 
this experiment it is weaker than the central line by a 
factor of (k/kDY. A more detailed discussion of the be­
havior of ImIIee

+(&,co) including the effect of collisions 
is given in Ref. 3. 

The total scattering rate integrated over the central 
resonance can be obtained by integrating 

F do) 
Imne6

+(£,co) 
(4.13) 

Using only the second term in (2.14) which is the only 
contribution near the central line 

7T r « 

2J_C 

do) e-(<»/aky< 

a2k2 

(?<>(«/*) 

k2+Qo(a>/k)+Q0(u/ak) 
(4.14) 

Changing variables to z=co/ak, this becomes 

1 T r 

2ak J_0 

dze 
k2+l+Q0(z) 

4 0.3TT 
~ , (4.15) 

2ak 

using lima _ 0Q(az) = 1 and &<3Cl to carry out a numeri­
cal integration. This integral becomes anomalously large 
as ak —> 0 because of the very large contribution from 
small o) in the collisionless approximation for nee(k,co). 
The collisionless approximation, however, is valid only 
for a£>>ree, whereTee is the electron-electron collision fre­
quency.3 To take this into account we can cut off the co 
integral at a lower limit of Tee and we find that (4.15) 
is valid to terms of order (Tee/ak). Therefore (in ordi­
nary units) if 

a(k/kD)uvy>Tee^wv\ ln(X *), (4.16) 

then (4.15) can be used. 

The total rate over the central line is then roughly 
fusing a—{m/M)l/2~] for photons scattered in a plane 
perpendicular to the incoming light 

rT o t; - — ( - ) ( - ) - J c o s ^ o 
'0 \mJ W \kJ Vo 

nin2c/M\1/2 1 1 n2 

d0~ n f—) . 
Vo \m) co0

3&r l / 2 
(4.17) 

These photons are confined to a solid angle 

W - ) -

\MJ kD 

Aoo sin2^o /m\l,2k 00p sin2^0 
A133=A<£ =A«( — ) , (4.18) 

COo COS^o KM/ kD Wo COS0Q 

where we have used (4.8) and (4.12). Here A<£ is the 
increment of azmuthal angle subtended by the detector. 
This formula applies to a well collimated beam in which 
the angular divergence of the beam is much smaller 
than AO3 a situation which is easily obtainable from a 
laser.9 

Including (4.16) we have placed the following restric­
tions for the validity of (3.17): (i) coo = a>i = a>2^>wp so 
that the j • A interactions can be dropped; (ii) kx—ktf^hi) 
so that collective effects dominate and the principal 
scattering is confined to the narrow central line, (iii) 
\=ko*/n<^l so that we have a weakly coupled plasma 
and (iv) a(k/kD)»\ ln(l/X) as in (4.16). 

9 Because of the smallness of the solid angle A12 into which the 
light is scattered for a well collimated beam, the competing back­
ground of incoherent scattering can be greatly reduced. The dif­
ferential scattering rate d2r/dmd£l3 for incoherent scattering inte­
grated over the frequency range of the central ion resonance is 
(see Ref. 3) 

where N is the total number of electrons illuminated by the beam. 
Note that this rate is proportional to the solid angle dtts in which 
the scattered photon is observed. If we take this solid angle to be 
AQ3 of Eq. (4.18) which contains the entire central line in the light 
by light scattering, we find the ratio of the scattering rates 

rtot(light by light) 1.2TT 
T (incoherent) vZ ' A < ^ 

ni M/co 
\0>o ) • ( * ) • • 

The factor n^/N can be made at least of order unity using a ruby 
giant pulse laser and iV^lO17. The factor (M/m)(kD/k)2 can 
easily be made large enough to overcome the small factor (cop/co0)

2-
Therefore, this ratio can be made greater than unity. This feature 
of the experiment makes it possible to discriminate against the 
background of competing processes. In addition, since this is a 
two-beam experiment, coincidence techniques can be used to dis­
criminate against background. This feature has also been pointed 
out by Platzman, Buchsbaum, and Tzoar (to be published) who 
consequently believe that even the weaker plasma line can be 
observed in light by light scattering. The formula for the scattering 
rate at the electron plasma resonance is obtained from our general 
results (4.9), (2.9), and (2.13), by noting (see Ref. 3) that if 
kve<£co, then Aire2 ImIIe6

+(&,co)==&2 Impez,4" (̂ ,co) ] _ 1 . This approxi­
mation, however, is not valid near the ion resonances. The authors 
are indebted to Dr. P. M. Platzman for communicating these 
results to us prior to publication. 
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Under these conditions, a rather high plasma density 
and temperature are required to achieve an observable 
counting rate using existing laser technology. For ex­
ample, using an amplified giant pulse ruby laser, it is 
possible to obtain wi = W2=1016 photons in an inter­
action volume F°=10 _ 1 cm3 with &i=105 cm -1, coo=3 
X1015 sec -1. To achieve a counting rate of 1014 photons 
per second or 106 photons in a 10~8 second laser pulse 
requires [with (M/m)1/2= 102] (T in °K) 

n2/T1/2> 1030. (4.19) 

This restriction as well as those listed above can be met 
for the minimum values ^~3X10 1 7 cm~3 and Tc^.2 

I. INTRODUCTION 

PARTICULARLY during the past 12 years, the 
measurement of mobility of ions in gases has been 

developed as a powerful tool for the identification of the 
ions. Enough cross comparisons with mass spectro-
graphic data have been made to establish the validity 
of mobility measurements for such identification. The 
existence of several types of ion in one gas, for example, 
He + and He2+ in helium,1 and the change of one ion to 
another with changing field strength to pressure ratio, 
E/p, as for example, N2"4" changing to N4+,2 are illus­
trations of the successes of mobility measurements in 
accomplishing ion-type identification. 

In gases, the cross section for ion-molecule collisions 
regulating the mobility is a momentum transfer cross 
section. There are at least three different atomic phe­
nomena now well known which contribute to this cross 
section. The first and most obvious is the hard-sphere 

* Work supported by a grant DA-ARO-D-31-124-G432. 
1 J. A. Hornbeck, Phys. Rev. 83, 374 (1951); 84, 615 (1952). 
2 R. N. Varney, Phys. Rev. 89, 708 (1953). 

X105 Q K= 20 eV. Such plasmas are probably obtainable 
in various magnetic pinch machines.10 
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10 The main restriction involved in the above estimate is the 
requirement k\<£kD which requires n/T <1012 if &i = 105 cm-1. 
However, if the experiment could be performed at extremely small 
scattering angles 0 then we have k = kid and we can relax the condi­
tion k\<kD. In this case the principal limitations are a{k/kD) 
^>XlnX_1 and the requirement (4.19) on the counting rate. These 
conditions can be satisfied for the minimal values w^lO16 cm -3 

and T~3 eV. For forward angles, however, the problems of back­
ground discrimination would become more difficult. 

cross section. While the actual form of interaction is 
probably an inverse ninth power repulsive force, a 
hard-sphere model is a good approximation. The second 
critical atomic characteristic influencing momentum 
transfer cross sections is the inverse fifth power attrac­
tive polarization force acting on ions in the vicinity of 
atoms or molecules. (In this work, only nonpolar sub­
stances are contemplated so that atomic or molecular 
polarizations must be induced by the field of the ions in 
the near proximity.) The combination of these two 
forces was assembled into a single theory of mobilities 
by Langevin3 in 1905 in a monumental work both in 
point of effort and importance. In it, by laborious 
numerical integrations, he deduced equivalent momen­
tum transfer cross sections. Quantum-mechanical 
modernizations by Hasse and Cook4 in the period 1926 
to 1931 have improved but only slightly altered Lange­
vin's results. 

The third atomic phenomenon of key influence on 

3 P. Langevin, Ann. Chim. et Phys. 8, 245 (1905). 
4 H. R. Hasse and W. R. Cook, Phil. Mag. 12, 554 (1931). 
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Mobility of Positive Ions in Liquefied Argon and Nitrogen* 
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Drift velocities of positive ions in liquid argon and liquid nitrogen have been measured for applied electric 
fields in the range from 0 to 4300 V/cm. These data were taken at pressures of 1 atm and at temperatures 
corresponding to the respective liquids' boiling points at this pressure. A time-of-flight spectrometer, con­
sisting of an ion source, an electronic shutter, and a final drift space, was used. The ions were produced by the 
technique of field ionization. This was accomplished by immersing a tungsten point (etched down to a radius 
of less than 1000 A) in the respective liquefied gases and applying a high potential to it. The times of flight of 
the ions across the final drift space were determined by amplifying the ion current and displaying it on an 
oscilloscope. It was found that step-like changes in the curves of ion mobility versus E occurred in both 
liquid argon and liquid nitrogen. Five such constant-mobility regions were found in liquid argon and four in 
liquid nitrogen. These constant mobilities were found to be 6.0X10"4, 9.75X10"4, 8.50X10"4, 7.75X10~4, 
and 7.25X10"4 cm2/V-sec in liquid argon, and 2.50X10-3, 1.80X10~3, 1.54X10"-3, and 1.36X10-3 Cm2/V-sec 
in liquid nitrogen. It is suggested that these mobilities may correspond to ionic clusters. 


